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A DOMAIN WALL MODEL FOR HYSTERESIS IN PIEZOELECTRIC MATERIALS

RALPH C. SMITH� AND ZOUBEIDA OUNAIESy

Abstract. This paper addresses the modeling of hysteresis and nonlinear constitutive relations in

piezoelectric materials at moderate to high drive levels. Hysteresis and nonlinearities are due to the domain

structure inherent to the materials and both aspects must be addressed to attain the full potential of the

materials as sensors and actuators in high performance applications. The model employed here is based

on previously developed theory for hysteresis in general ferroelectric materials. This theory is based on the

quanti�cation of the reversible and irreversible motion of domain walls pinned at inclusions in the material.

This yields an ODE model having �ve parameters. The relationship of the parameters to physical attributes

of the materials is detailed and algorithms for determining estimates of the parameters using measured values

of the coercive �eld, di�erential susceptibility and saturation properties of the materials are detailed. The

accuracy of the model and its capability for the prediction of measured polarization at various drive levels

is illustrated through a comparison with experimental data from PZT5A, PZT5H and PZT4 compounds.

Finally, the ODE model formulation is amenable to inversion which facilitates the construction of an inverse

compensator for linear control design.
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1. Introduction. Piezoelectric materials provide the capability for designing actuators and sensors

which are compact, lightweight, can be molded or constructed in a variety of con�gurations, and are relatively

inexpensive. Hence the materials are being employed in an increasing number of structural and structural

acoustic applications with uses which include active vibration control, the attenuation of structure-borne

noise, micropositioning, and high performance structural drivers. The mechanisms which provide the ma-

terials with both their sensor and actuator capabilities are due to the noncentrosymmetric nature of the

materials and, more speci�cally, to domain switching in response to applied �elds or stresses. In the former

case, the polar changes, which occur when ions displace to align with an applied �eld, produce the strains

used to actuate the underlying structure. Conversely, the application of stresses produces deformations in the

material which alter the polarization and subsequently generate the voltages measured when the materials

are employed as sensors. These are the converse and direct piezoelectric e�ects.

As a result of the ferroelectric nature of the materials, they also exhibit varying degrees of hysteresis

and nonlinear saturation e�ects at moderate to high drive levels as illustrated in Figure 1. As detailed in

[19] and references therein, this form of hysteresis is generally attributed to the impediment of domain wall

movement by material inclusions and stress nonhomogeneities inherent to the materials. In the absence

of an applied �eld, domain walls form at these pinning sites to minimize the associated potential energy.

Various experimental investigations have illustrated that at low input �eld levels, domain wall movement
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Fig. 1. Hysteresis measured in a PZT5A wafer in response to a 1600 V input.

is reversible and can, at least conceptually, be attributed to the bending of domain walls [3, 5, 14]. For

higher input �elds, the local energy barriers associated with pinning sites are overcome and domain walls

move for extended distances [3]. This translation of domain walls across pinning sites provides an irreversible

mechanism contributing to the hysteresis observed in ferroelectric materials.

The hysteresis inherent to ferroelectric materials can be accommodated through a variety of techniques.

The simplest means for minimizing hysteresis is to restrict the input �elds or stresses to su�ciently low levels

to maintain quasilinear behavior. However, this severely limits the capabilities of the materials and is not

feasible in many high performance applications where the materials are advantageous. For certain control and

damping applications, the deleterious e�ects of hysteresis can be minimized either indirectly through feedback

mechanisms which maintain the system at low input levels or directly through techniques such as feedback

linearization. While successful in certain regimes, both approaches are often signi�cantly handicapped by

the phase lags associated with the hysteresis loops [8, 17]. Furthermore, open loop applications which require

a high degree of accuracy (e.g., micropositioning) are not typically amenable to these feedback techniques,

and hysteresis must be accommodated through additional design criteria or models which can be used to

compensate for the hysteresis and saturation nonlinearities.

In this paper, we consider a hysteresis model for piezoelectric materials which is based on the quanti�-

cation of domain and domain wall mechanisms inherent to the materials. The model is based on the theory

developed in [18, 19] for the general characterization of hysteresis in ferroelectric materials. We focus here on

the modeling of hysteresis in the relation between the applied �eld and resulting polarization; the resulting

strains can then be speci�ed through linear constitutive relations in the manner described in [18, 19]. In the

�rst step of the model development, the hysteresis-free, or anhysteretic, relation between an applied �eld

and the resulting polarization is quanti�ed through three techniques. The �rst two anhysteretic models are

empirical in nature and are used to provide initial estimates for parameters in the �nal hysteresis model.

The third is based on the classical application of Boltzmann statistics and provides constitutive relations

which are applicable at low drive levels. Hysteresis is then modeled through the characterization of the re-

versible and irreversible motion of domain walls pinned at inclusions in the material. The combination of the
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components provides an ODE model which incorporates the nonlinear constitutive relations and hysteresis

observed in various PZT compounds at high drive levels.

While the model is based on the theory developed in [18, 19], the contributions of this paper are threefold.

(i) The �rst is the extension of the theory to include nonsymmetric hysteresis loops. The resulting model

contains the symmetric model developed in [18, 19] as a special case but accommodates the nonsymmetric

e�ects due to poling in hard PZT materials. (ii) The second contribution is an extensive validation of

the theory for commonly employed piezoelectric materials under a variety of drive levels. The model in

[18, 19] was illustrated in the context of the relaxor ferroelectric PMN-PT-BT employed at one drive level at

su�ciently low temperatures for it to be ferroelectric. In this paper, the predictive capabilities of the model

are illustrated by identifying parameters at one drive level and then using the resulting model to predict

the PZT material behavior at other input levels. The model's capability for prediction is due to its basis in

energy principles and provides it with an important advantage in broadband applications. Furthermore, this

capability is illustrated for the commonly employed compounds PZT5A, PZT5H and PZT4. (iii) The third

contribution of the paper is the development of a method for approximating the �ve required parameters

in the model. This algorithm is analogous to that developed in [13] for magnetic materials and provides

initial estimates for the parameters through a comparison of the model with physical attributes of the data

including the coercive �eld, the di�erential susceptibility at various points, and the saturation characteristics

of the material. These estimates can be employed in the �nal model, if su�ciently accurate, or used as initial

values in a least squares �t to measured data. In combination, these contributions illustrate the applicability

of the theory for piezoelectric materials and extend its practical feasibility for more general ferroelectric

applications.

We note that the current model is quasistatic and isothermal in nature. Moreover, it is theoretically

limited to materials in which crystalline anisotropies are not signi�cant. While initial investigations indicate

that its applicability extends beyond these regimes, such applications should be considered with caution

until the underlying physics is incorporated in the models. The extensions of the theory to accommodate

frequency and thermal e�ects as well as crystalline anisotropies are under investigation.

A brief review of existing models for hysteresis in piezoelectric materials is summarized in the remainder

of this section and the hysteresis model is then outlined in Section 2. The relationship of the model parameters

to physical properties exhibited by the materials is detailed in Section 3 and an algorithm for estimating

the parameters is provided. This section also includes a discussion of least squares methods which can be

employed for �nal parameter determination. In Section 4, the model is �t to data from PZT5A, PZT5H

and PZT4 wafers under a variety of drive conditions. This illustrates both the accuracy of the model and

its capability for predicting the polarization due to changing drive levels.

1.1. Existing Models. Hysteresis models for piezoelectric materials can be roughly categorized as

being microscopic, macroscopic or semi-macroscopic in nature. Microscopic theories are considered as those

based on quantum principles, classical elasticity or electromagnetic relations, or thermodynamic laws applied

at the lattice or grain level. While such theories are founded on the underlying physics, they often require a

large number of parameters and involve states which are di�cult or impossible to measure [15]. Moreover, it

is di�cult to incorporate attributes such as grain boundaries and intergranular stresses in the models. For

this reason, microscopic models are currently limited to simple stoichiometries and are di�cult to implement

in control designs due to the large number of required parameters.

Macroscopic models are based on phenomenological or empirical principles and are considered advanta-

geous when the underlying physics is poorly understood or di�cult to characterize. This category includes
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models based on shifted anhysteretic curves which provide an envelop for the hysteresis curves (e.g., [23]) as

well as various Preisach models for hysteresis in piezoelectric materials [6, 7, 8]. In addition to the generality

provided by such approaches, the resulting models can for certain formulations be inverted to provide com-

pensators for linear control design [6, 8, 21]. This has led to the fairly widespread use of Preisach techniques

for modeling hysteresis in a variety of smart materials including piezoceramics. The disadvantage with this

approach lies in the fact that it is di�cult to employ known physics or physical measurements to directly

construct the model or update the model parameters to accommodate changing operating conditions. Fur-

thermore, to provide 
exibility for a variety of drive conditions (e.g., broadband or transient conditions),

it is necessary to employ a large number of nonphysical parameters which makes real-time implementation

di�cult.

Semi-macroscopic theories are derived using a combination of these approaches. They typically employ

energy relations to characterize attributes of the polarization switching mechanism and then use macroscopic

averages to obtain parameters and subsequent models for the bulk behavior of the polycrystalline material.

For example, the theory of Chen and Lynch [2] employs energy relations to quantify the polarization and

strain at the grain level. Macroscopic averaging over the grains is then used to characterize the aggregate

behavior of the material. A model for quasistatic hysteresis was obtained by Huang and Tiersten [9] through

the incorporation of internal variables in the thermodynamic state to incorporate the irreversible e�ects

inherent to domain switching. The resulting model employs seven nonlinear material coe�cients and three

saturation polarization coe�cients to provide a characterization of the hysteresis in the relations between

the �eld and polarization and �eld and strain.

The model employed in this paper �ts in the latter category. Electrostatic energy relations are employed

to quantify the reversible and irreversible e�ects of domain wall bending and translation. Macroscopic aver-

ages then provide a model whose �ve parameters quantify the bulk attributes of the material. Construction

in this manner provides the model with its predictive capabilities and facilitates the determination and

updating of parameters from measured data. Both aspects prove advantageous in control applications.

This provides an overview of certain models which speci�cally address the modeling of hysteresis in

piezoelectric materials. The reader is referred to [18, 19] for additional discussion of previous hysteresis

models for general ferroelectric materials.

2. Hysteresis Model. We summarize in this section those aspects of the hysteresis theory presented

in [18, 19] which are relevant to piezoelectric materials. In the �rst step of this development, various models

for the anhysteretic polarization are outlined. Hysteresis is then incorporated through the quanti�cation of

the energy required to bend and translate domain walls.

2.1. Anhysteretic Polarization. The anhysteretic polarization curve represents the minimal energy

states that would be attained by the material in the absence of inclusions or imperfections. As illustrated

by the modeled curves in Figure 2, the anhysteretic has a burst region near the origin, where dipole rotation

toward preferred ionic con�gurations produces large changes in polarization, and exhibits saturation at high

�eld levels where charge distributions prohibit further changes. In contrast to the measured polarization

curves at high drive levels, the anhysteretic polarization is single-valued and reversible.

Three techniques are outlined for modeling the anhysteretic curve. The �rst two are empirical and

provide expressions which are used to specify parameters in the algorithms developed in Section 3. The last

technique speci�es the probability of dipoles occupying certain energy states through classical Boltzmann

statistics. The resulting representations are used as kernels in the hysteresis model.
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Fig. 2. Ising spin and Langevin models for the anhysteretic polarization.

The �rst model is based on the extension of the Fr�olich-Kennelly anhysteretic model for magnetic

materials [11, page 94] to ferroelectric materials. This yields the expression

Pan =
b
E

1 + 
E

where E and Pan respectively denote the applied electric �eld and anhysteretic polarization. One parameter

can be eliminated by enforcing the saturation behavior Pan ! Ps as E ! 1, where Ps is the saturation

polarization. This then yields the relation

Pan =

PsE

1 + 
E
:(2.1)

While not employed in the �nal hysteresis model, the expression (2.1) provides a means of estimating certain

parameters in the model.

A second model for the anhysteretic polarization is the empirical expression

Pan =

p
�PsEp
1 + �E2

(2.2)

developed by Piquette and Forsythe [16]. The initial behavior and slope of this curve at high �elds is similar

to that of (2.1) while the mid-range behaviors and saturation values di�er. The expression (2.2) will also be

used to specify initial parameter values in the algorithms.

The third model employs Boltzmann statistics to specify the probability of dipoles occupying certain

energy states. As detailed in [18, 19], the balance of thermal and electrostatic energies while employing

the assumption that the material is isotropic and the orientation of cells can be in any direction yields the

Langevin equation

Pan = Ps

�
coth

�
Ee

a

�
� a

Ee

�
(2.3)

for the anhysteretic polarization. Here

Ee = E + �Pan(2.4)
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denotes the e�ective �eld acting on dipole moments in the material while � = bE=Ps where bE denotes a

scaling electric �eld. The constant a is speci�ed by a = bET
3Tc

where T and Tc are the operating and Curie

temperatures for the material. Because the scaling �eld bE is unknown, the constants a and � are estimated

using either the algorithm derived in Section 3 or a least squares �t to data.

A second expression derived using this Boltzmann approach is the Ising spin relation

Pan = Pstanh

�
Ee

a

�
(2.5)

which results from the assumption that the dipole moments can occupy only two discrete orientations: in the

direction of the applied �eld or opposite to it. As noted in Figure 2 where the relations (2.3) and (2.5) are

compared, the restrictions on possible moment orientations causes the Ising spin relation to reach a higher

saturation state than observed for the Langevin model with equivalent inputs. Further discussion concerning

the merits of the two relations as well as details regarding their derivation are provided in [18, 19].

The relations (2.3) and (2.5), with the e�ective �eld speci�ed by (2.4), yield anhysteretic curves which

are rotationally symmetric about the origin as illustrated in Figure 2. For PMN-PT-BT or soft piezoceramic

materials, these expressions are su�cient since the relation between the applied �eld and resulting polar-

ization is also rotationally symmetric. This is not the case for hard PZT materials which have been poled,

however, and the expressions must be modi�ed to incorporate the observed asymmetries.

To motivate modi�cations which incorporate the observed asymmetries, consider the data from a poled

PZT4 wafer which is plotted in Figure 3. It is observed that the poling produces a bias polarization P0 and

�eld E0 which causes the positive and negative remanence points and coercive �elds to di�er. These values

bias the e�ective �eld so we consider the modi�ed expression

Ee = (E �E0) + �(P � P0) :(2.6)

In this case, the e�ective �eld re
ects the bias �eld in the absence of an applied �eld E.

To accommodate both asymmetric major loops and biased minor loops, we also consider the modi�ed

anhysteretic expressions

Pan = P1 + Ps

�
coth

�
Ee

a

�
� a

Ee

�
(2.7)

and

Pan = P1 + Pstanh

�
Ee

a

�
(2.8)

where P1 is a scaling polarization. The curves produced by the Langevin model (2.7) with P1 = 0 and

P1 = P0 6= 0 are illustrated in Figure 4. In both cases, the curves are asymmetric with respect to the origin.

For P1 = 0, the curve is rotationally symmetric about a point ( �E; �P ) determined through the numerical

solution of (2.7) or (2.8) whereas for P1 = P0, the change of variables P = P � P0; E = E � E0 reveals that

the curve is rotationally symmetric about the bias point (E0; P0).
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Fig. 3. Data from a poled PZT4 wafer in response to a 2000 V input.
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Fig. 4. Anhysteretic curves produced by the Langevin model (2.7) with � = 3:4 � 106 Vm/C and

a = 8:0 � 105 C/m2; (a) E0 = �0:5 � 106 V/m, P0 = :05 C/m2 and P1 = 0, (b) E0 = �0:5 � 106 V/m,

P0 = :05 C/m2 and P1 = P0.

2.2. Domain Wall Model. The relations (2.7) or (2.8) can be used to model the observed polarization

at low drive levels but are inappropriate at moderate to high drive levels since they do not incorporate the

hysteresis inherent to the materials. As detailed in [19] and included references, sigmoidal hysteresis of the

type depicted in Figure 1 is typically attributed to the energy required to translate domain walls across

pinning sites in the material. At low �eld levels, the walls remain close to the equilibrium position and

the motion is reversible. From an energy perspective, the variations are not su�cient to cross a barrier in

the potential well. The motion becomes irreversible when su�cient energy is provided to cross the potential

barrier. Physically, this can occur when the domain wall intersects a remote pinning site and is the mechanism

underlying domain wall translations. The resulting irreversible polarization Pirr and reversible polarization
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Prev are then summed to obtain the total polarization. This approach follows that employed by Jiles and

Atherton in their corresponding hysteresis model for ferromagnetic materials [12].

To quantify the irreversible polarization, it is noted in [18, 19] that the polarization level for a given

e�ective �eld can be expressed as that for the ideal case minus losses required to break pinning sites. This

yields the relation

Pirr = Pan � k
dPirr
dEe

:(2.9)

The parameter k is de�ned by k = nhE�i
2p where n denotes the average density of pinning sites, hE�i is

the average energy for 180o walls and p is an average dipole moment. Because the density and energy of

individual pinning sites are unknown, the parameter k must be estimated for a given material.

The formulation of (2.9) in terms of the applied �eld E yields the di�erential equation

dPirr
dE

=
Pan � Pirr

�k � �(Pan � Pirr)

specifying the irreversible polarization. The parameter � = sign(dE) ensures that the energy required to

break pinning sites always opposes changes in polarization. As discussed in [18, 19], while this expression

is adequate in most regimes, it can yield nonphysical solutions when the �eld is reversed from saturation

for materials which exhibit signi�cant hysteresis and are driven at high levels. The enforcement of solely

reversible polarization changes in this regime eliminates this discrepancy and yields the relation

dPirr
dE

= e� Pan � Pirr
k� � � (Pan � Pirr)

(2.10)

where

e� = ( 1 ; fdE > 0 and P < Pang or fdE < 0 and P > Pang
0 ; otherwise :

The second component of the polarization is the reversible polarization which models the e�ects of

domain wall bending. To �rst approximation, this is modeled by the relation

Prev = c(Pan � Pirr)(2.11)

where c is a parameter which must be estimated for the speci�c application (see [18, 19]).

The total polarization is then given by

P = Prev + Pirr

or equivalently,

P = cPan + (1� c)Pirr :(2.12)

To implement the model, the e�ective �eld for a given �eld and irreversible polarization level is computed

using (2.6). This e�ective �eld value is then employed in either (2.7) or (2.8) to compute the corresponding

anhysteretic polarization. The subsequent irreversible polarization is determined by numerically integrating

(2.10). The total polarization is then speci�ed by (2.12). The determination of parameters is addressed in

the next section while the prediction capabilities of the model are illustrated in Section 4.
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3. Determination of Parameters. The implementation of the model requires the determination of

the parameters �; a; k; c and Ps for a given material. Recall that � quanti�es the amount of dipole coupling in

the e�ective �eld while a incorporates the relative thermal e�ects which are balanced with the electrostatic

energy to model the anhysteretic polarization. As detailed in [19], increasing � or decreasing a leads to

increased slopes in the anhysteretic curve and corresponding polarization. The parameter k is a macroscopic

average of the energy required to break pinning sites. Hence large k values are associated with wider

hysteresis loops (e.g., hard PZT materials). The parameter c quanti�es the average degree to which domain

walls bend before translating across pinning sites; hence it too will be larger for hard materials than for

soft. Finally, Ps denotes the theoretical saturation value beyond which, polar interactions prevent further

increases in polarization. This de�nition is in accordance with the corresponding de�nition for the saturation

magnetization (e.g., see [11]) and should not be confused with the de�nition employed in several texts (e.g.,

[10, page 36]) for the saturation value obtained by extending the slope at tip reversal back through the

vertical axis. Further details regarding the derivation and physical interpretation of these parameters are

provide in [18].

In this section, we present two methods for determining the parameters based on data measurements

from a given material. The �rst uses the measured values of the anhysteretic and initial susceptibilities

(if available), the measured remanence polarization, the coercive �eld and peak tip polarization, as well

as the di�erential susceptibilities at these points, to provide constraints which permit the determination of

the parameters. This approach is analogous to that employed in [13] for magnetic materials but leads to

a di�erent algorithm for determining the parameters. This technique highlights the physical nature of the

parameters and is direct to implement, but can lead to model �ts with limited accuracy since it employs

minimal information concerning the hysteresis curve. The second approach determines the parameters

through a least squares �t to the data. This provides highly accurate model �ts, but requires fairly good

initial guesses for the parameters to reach optimal values. In practice, we employ the �rst technique to

obtain initial parameter values. In many cases, the resulting model �t is satisfactory. If re�nement is

necessary, however, these parameter values can be employed as initial estimates in the least squares routine.

In combination, the two approaches provide a systematic and robust means of determining the parameters

for a given material.

3.1. Direct Parameter Determination from Experimental Data. The saturation polarization

Ps has the most direct physical connotation and can be estimated from the data at high (near saturation)

drive levels. These estimates can then be re�ned using either of the following methods.

3.1.1. Di�erential Susceptibility Relations. To determine the constraints used to specify the re-

maining parameters, we consider the di�erential susceptibility at various points in the hysteresis cycle. From

the de�nition (2.10) for the di�erential susceptibility of the irreversible polarization and (2.12) for the total

polarization, we see that two cases need to be considered when computing dP
dE . When the �eld is �rst reversed

from saturation, the only changes in polarization are due to the reversible e�ects of domain wall relaxation.

This motivates the inclusion of the switch e� and yields the expression

dP

dE
= c

dPan
dE

(3.1)

for the di�erential susceptibility in that region. For the remainder of the hysteresis cycle, the combination

of (2.10) and (2.12) yields the expression

dP

dE
= (1� c)

Pan � Pirr
k� � �(Pan � Pirr)

+ c
dPan
dE

:
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A second application of the polarization relation (2.12) can be used to eliminate the irreversible polarization

which yields

dP

dE
= (1� c)

Pan � P

k�(1� c)� �(Pan � P )
+ c

dPan
dE

:(3.2)

The evaluation of (3.2) requires the determination of dPan
dE which depends upon the model being em-

ployed. For the examples in Section 4, we employ the Langevin expressions (2.3) or (2.7) and we illustrate

with (2.3) here. For general polarization values, the e�ective �eld is Ee = E + �P which yields

dPan
dE

=
Ps
a

�
1 + �

dP

dE

��
�csch2

�
E + �P

a

�
+

�
a

E + �P

��
:(3.3)

For the single-valued global anhysteretic curve depicted in Figure 2, the e�ective �eld is speci�ed by (2.4)

which yields the implicit relation

dPan
dE

=
Ps
a

�
1 + �

dPan
dE

��
�csch2

�
E + �Pan

a

�
+

�
a

E + �Pan

��
:

Initial Susceptibilities

Taking the limits as E ! 0; Pan ! 0, and letting �an denote the di�erential susceptibility at the origin,

as depicted in Figure 5, yields

�an =
Ps
3a

(1 + ��an)

or

�an =
Ps

3a� �Ps
:(3.4)

For given Ps, this yields the expression

� =
3a�an � Ps
Ps�an

(3.5)

relating � to a.

The second characteristic which can be employed at the origin is the initial di�erential susceptibility

�in. Taking the limits E ! 0; P ! 0 in (3.2) yields the relation

�in = c�an(3.6)

which can be used to specify c if �in and �an can be measured or approximated. To evaluate the slope of

the initial polarization curve, we take the limit E ! 0; P ! 0 in (3.2) with the anhysteretic speci�ed by

(3.3). This yields

�in =
Psc

3a
(1 + �xin)

from which it follows that

� =
3a�in � cPs
cPs�in

:(3.7)

Equating (3.5) and (3.7) and employing (3.6) to eliminate �in then yields the expression

a =
Ps
3�an

:(3.8)
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Fig. 5. Hysteresis curve with di�erential susceptibilities employed for parameter determination.

Once �an has been approximated or determined from experimental data, (3.8) can be used to approximate

the parameter a and � can be determined from (3.5).

Susceptibility at Field Reversal

We consider next the behavior of the hysteresis loop near the tip value (Em; Pm). It was previously noted

that directly after �eld reversal, the di�erential susceptibility is dependent only on domain wall relaxation

which yields the expression (3.1). Furthermore, if the polarization is su�ciently close to saturation, the

di�erential susceptibility can be approximated by

dP

dE
=

dPan
dE

(3.9)

in the region before �eld reversal (see also [13] for the magnetic case). Letting �+m and ��m respectively denote

the di�erential susceptibilities before and after �eld reversal at the tip loop (see Figure 5), the combination

of (3.1) and (3.9) yields the expression

c =
��m
�+m

(3.10)

for the reversibility coe�cient. We note that the accuracy of this expression improves for measurements near

saturation.

Furthermore, since � = 1 before �eld reversal, the consideration of the approximation (3.9) in (3.2) yields

�+m =
Pan(Em)� Pm

k�(1� c)� �(Pan(Em)� Pm)
(3.11)

where, for the symmetric case, Pan(Em) is speci�ed by (2.3) or (2.5) with Ee = Em + �Pm. The expression

(3.11) can be solved explicitly for k or implicitly for a or �.
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Remanence Point

Similar constraints are provided by matching the di�erential susceptibilities at the coercive and rema-

nence points. At remanence, � = �1; E = 0 and P = Pr so that the relation (3.2) has the form

�r = (1� c)
Pan(Pr)� Pr

k�(1� c)� �(Pan(Pr)� Pr)
+ c

dPan(Pr)

dE
(3.12)

where, for the symmetric Langevin expression (2.3),

Pan(Pr) = Ps

�
coth

�
�Pr
a

�
� a

�Pr

�
dPan
dE

(Pr) =
Ps
a
(1 + ��r)

�
�csch2

�
�Pr
a

�
+

a

�Pr

�
:

Because the relation (3.12) is implicit in the variables a and �, it is solved through either root-�nding or

minimization techniques.

Coercive Field

At the coercive �eld, � = 1; E = Ec and P = 0, so the di�erential susceptibility is

�c = (1� c)
Pan(Ec)

k�(1� c)� �Pan(Ec)
+ c

dPan(Ec)

dE
:

This can be solved for k to yield

k = Pan(Ec)

"
�

1� c
+

 
1

�c � cdPan(Ec)
dE

!#
:(3.13)

For speci�ed values of a; �; c and Ps, (3.13) provides an estimate for the average energy required to break

pinning sites in both hard and soft materials.

As detailed in [11, pages 170-171] for magnetic materials, this expression can be simplied signi�cantly

for soft materials when the reversible component is negligible and hence the approximation c = 0 is valid.

For materials with low coercivity, it has also been observed that the di�erential susceptibility at the coercive

point is approximately equal to the slope of the anhysteretic curve at the origin so that

�c = �an

(see Figure 5). Furthermore, both are approximately linear so that for small Ec, it follows from (3.4) that

Pan(Ec) = �anEc

=

�
Ps

3a� �Ps

�
Ec :

(3.14)

We now let c = 0 and employ the relations (3.14) in (3.13) to obtain

k =
Ec

1� �Ps
3a

:

To a �rst approximation, this yields the relation

k � Ec :(3.15)

As will be illustrated in the examples, the values predicted by (3.15) can be used as initial values for the

parameter estimation routines and in many cases are quite accurate.
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3.1.2. Approximation of �an and �in. The relations (3.4) - (3.13) provide constraints which will

be used for constructing an algorithm for determining the parameters a; �; c and k. For cases in which the

measured values of �an and �in are available, the constraints (3.4) and (3.6) can be applied directly. In

applications in which the material starts from a poled state, however, these values may be unavailable which

necessitates their approximation.

For ferromagnetic materials whose hysteresis loops are rotationally symmetric about the origin, it has

been observed that for a given �eld value, pointsMin on the initial magnetization curve can be approximated

by the average

Min = (M1 +M2)=2

where M1 and M2 are the corresponding magnetizations on the upper and lower hysteresis curves [1, page

511], [4]. A corresponding assumption for ferroelectric materials yields the approximation

xin = (�r + ��r )=2(3.16)

where �r and ��r denote the di�erential susceptibilities at the positive and negative remanence points (see

Figure 5).

The initial slope of the anhysteretic curve can be approximated using the alternative model expressions

(2.1) and (2.2). To eliminate the single parameter appearing in each expression, we enforce the condition

dPan
dE

(Pm) = �m

where �m = (�+m + ��m)=2. In expression (2.1), this yields


 =
�(2Em�m � Ps) +

p
P 2
s � 4PsEm�m

2�mE2
m

and the corresponding initial slope

�an1 = 
Ps :

The corresponding initial slope predicted by (2.2) is

�an2 =
p
�Ps

where

� =
1

6

b1=3

E3
m�m

+
2P 2

s

E3
m�mb

1=3
� 1

E2
m

with

b = �12P 2
s

h
9Em�m �p

3
p
�4P 2

s + 27E2
m�

2
m

i
:

The initial slope of the anhysteretic is then approximated by

�an = (�an1 + �an2)=2 :(3.17)

We note that the accuracy of the approximations (3.16) and (3.17) is dependent upon the speci�c material

and operating conditions under consideration. To accommodate inaccuracies due to either these approxima-

tions or measurement errors, the following algorithms employ the remaining constraints to re�ne estimated

parameter values.
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3.1.3. Determination of Parameters. The susceptibility and saturation criteria can be combined

to provide algorithms for specifying the parameters a; �; k and c and updating Ps. In certain cases, the

relations provide implicit constraints on the variables which necessitates the use of root �nding techniques

(e.g., the Matlab routine fzero.m) for solution. Algorithms 1 and 2 di�er in the manner through which

parameter estimates are re�ned. In both cases, initial estimates are obtained directly from the constraints.

In Algorithm 1, these estimates are re�ned by iterating through the constraints. While direct to implement,

this technique does not enforce criteria which guarantee convergence. The second algorithm is more robust

since re�nement is accomplished through the minimization of a functional which simultaneously incorporates

all constraints.

The accuracy of the parameters obtained using either method is dependent upon the degree to which

the slope information at the initial, remanence, coercive and extreme points quanti�es the overall behavior

of the hysteresis curve. For cases in which this information is not su�cient, the parameter estimates can be

employed as initial values in the least squares routine described in Section 3.2. This incorporates the full

behavior of the hysteresis curve and produces model �ts which are optimal in a least squares sense.

Algorithm 1 (Iterative Re�nement):

(A) Determine Initial Parameter Values:

(1) Specify c: From (3.10),

c =
��m
�+m

:

This can be updated using c = �in=�an from (3.6) using either measured values of �in and �an

or approximates given by (3.16) and (3.17), respectively.

(2) Specify a: From (3.8),

a =
Ps
3�an

where �an is either measured or approximated using (3.17).

(3) Specify �: Solve (3.12)

�r = (1� c)
Pan(Pr)� Pr

k�(1� c)� �(Pan(Pr)� Pr)
+ c

dPan(Pr)

dE

using k = Ec from (3.15).

(4) Specify k: From (3.13)

k = Pan(Ec)

"
�

1� c
+

 
1

�c � cdPan(Ec)
dE

!#
:

(B) Iterative Re�nement: Iterate until convergence is achieved.

(i) Solve (3.12) for �

(ii) Solve (3.11) for a

(iii) Solve (3.13) for k

14



Algorithm 2 (Simultaneous Re�nement):

(A) Determine Initial Parameter Values: Same as Algorithm 1.

(B) Simultaneous Re�nement: Solve

min
q
kF(q)k

where q = [�; a; c; k] and F(q) = [F1(q); F2(q); F3(q)]
T with

F1(q) = �r � (1� c)
Pan(Pr)� Pr

k�(1� c)� �(Pan(Pr)� Pr)
� c

dPan(Pr)

dE
(From (3.12))

F2(q) = k � Pan(Ec)

"
�

1� c
+

 
1

�c � cdPan(Ec)
dE

!#
(From (3.13))

F3(q) = �+m � Pan(Em)� Pm
k�(1� c)� �(Pan(Em)� Pm)

(From (3.11))

Note: One can also consider q = [�; a; c; k; Ps] to additionally update Ps.

3.2. Least Squares Determination of Parameters. The algorithms developed in Section 3.1 high-

light the physical nature of the parameters and are straightforward to implement. Because they incorporate

a limited amount of information through the constraints, however, they may not provide su�cient accuracy

in certain applications. A least squares method of the type described here incorporates the polarization

values measured throughout the hysteresis cycle and can be used to obtain parameters that yield models

which optimally �t the data in a least squares sense.

To formulate the least squares parameter estimation problem, let ( bEi; bPi); i = 1; � � � ;N , denote the �eld

and corresponding polarization values measured throughout the hysteresis cycle. Furthermore, let P ( bEi; q)

denote the parameter-dependent model solutions speci�ed by (2.12). For admissible parameters q 2 Q, we

then solve the optimization problem

min
q

NX
i=1

���P ( bEi; q)� bPi���2 :(3.18)

An initial value q0 can be speci�ed either through a priori information or the parameter estimates obtained

using the algorithm developed in the previous section. Model �ts obtained using this procedure are provided

in the next section.

4. Model Validation. To illustrate the performance and prediction capabilities of the model and pa-

rameter estimation methods, we consider the characterization of hysteresis in a variety of PZT compounds.

Speci�cally, we consider its performance for PZT5A, PZT5H, and PZT4 wafers as well as its 
exibility for

characterizing the hysteresis in patches having di�erent geometries. The materials and geometric con�g-

urations which we consider are summarized in Table 1. All data was collected at 200 mHz to maintain

quasistatic operating conditions with the exception of a 1 Hz set for PZT5A which is included to illustrate

that even at 1 Hz, frequency-dependent e�ects are observed in the material.

The parameters predicted by Algorithm 2 in Section 3.1 and the least squares method from Section 3.2 are

compiled in Table 2. The measured �eld, polarization and slope characteristics employed in the algorithms
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are summarized in Table 3. We note that measured values of the initial anhysteretic and normal polarization

curves were not available so �in and �an were approximated using (3.16) and (3.17). A comparison of the

parameters predicted by Algorithm 2 and the least squares method illustrates that while they are close, the

least squares �t re�nes the values to provide better �ts throughout the hysteresis cycle.

Example 1 (PZT5A):

We �rst consider the characterization of hysteresis exhibited by PZT5A actuators with three sets of data

being considered. The �rst two illustrate that di�erent actuators can exhibit slightly di�erent hysteresis

characteristics which necessitates the updating of parameters. The third illustrates that frequency-dependent

e�ects can be present even at 1 Hz which motivates the use of 200 mHz data for quasistatic material

characterization.

Table 1. Materials, frequencies and geometrical con�gurations considered in the examples.

Material Frequency Geometry Dimensions

PZT5A 200 mHz Circular 2.54 cm Diameter, 0.0254 cm Thick

Example 1 PZT5A 200 mHz Rectangular 1.7 cm � 0.635 cm � 0.0381 cm

PZT5A 1 Hz Rectangular 1.7 cm � 0.635 cm � 0.0381 cm

Example 2 PZT5H 200 mHz Rectangular 3.81 cm � 0.635 cm � 0.0381 cm

Example 3 PZT4 200 mHz Rectangular 3.81 cm � 0.635 cm � 0.0381 cm

Table 2. Parameters determined using Algorithm 2 and the least squares method of Section 3.2 from

data collected at 200 mHz. PZT5A� is circular and PZT5Ay is rectangular.

PZT5A� (1600 V) PZT5Ay (1600 V) PZT5H (2200 V) PZT4 (1800 V)

Alg. 2 Least Sq. Alg. 2 Least Sq. Alg. 2 Least Sq. Alg. 2 Least Sq.

� 3:6� 106 3:6� 106 3:1 � 106 3:7� 106 4:0� 106 4:2� 106 6:5� 106 6:4� 106

a 4:4� 105 4:2� 105 4:2 � 105 4:1� 105 5:8� 105 6:4� 105 8:3� 105 8:0� 105

k 1:9� 106 1:8� 106 1:8 � 106 1:5� 106 1:1� 106 1:0� 106 2:5� 106 1:5� 106

c 0:18 0:30 0:22 0:15 0:14 0:20 0:37 0:40

Ps 0:49 0:49 0:49 0:49 0:425 0:425 0:44 0:44

Actuator 1 (Circular Patch):

As summarized in Table 1, the circular wafer had a diameter of 2.54 cm and was 0.0254 cm (10 mils)

thick. The wafer was depoled before use so the initial cycle contained transient behavior as the material was

polarized. Three complete steady state cycles were then measured for input voltages ranging from 600 V to

1600 V. The corresponding �eld inputs to the model were determined using the relation

E = V=d(4.1)

where d = 0:0254 cm is the thickness of the wafer.
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Table 3. Coercive, remanence and tip characteristics measured from 200 mHz data.

PZT5A (Circular) PZT5A (Rectangular) PZT5H PZT4

(1600 V) (1600 V) (2200 V) (1800 V)

Ec (V=m) 1:2� 106 1:3� 106 0:87� 106 1:4� 106

�c (C=(mV )) 7:3� 10�7 7:2� 10�7 7:5� 10�7 1:2� 10�6

Pr (C=m
2) 0:38 0:38 0:28 0:31

�r (C=(mV )) 4:4� 10�8 5:7� 10�8 8:2� 10�8 4:2� 10�8

Em (V=m) 6:2� 106 4:2� 106 5:8� 106 4:7� 106

Pm (C=m2) 0:46 0:43 0:38 0:39

�+m (C=(mV )) 2:8� 10�8 3:1� 10�8 1:5� 10�8 2:5� 10�8

��m (C=(mV )) 5:0� 10�9 6:7� 10�9 2:1� 10�9 9:5� 10�9

The parameters �; a; c; k and Ps were estimated using both techniques discussed in Section 3. The

employment of the data characteristics, summarized in Table 3, in Algorithm 2 provided the �rst set of

parameter values listed in Table 2. We note that the asymptotic relations employed in this algorithm are

more accurate near saturation which motivated the use of the 1600 V input data. The second set of values

were obtained through a least squares �t to the 1600 V data. A comparison of parameter values obtained

using the two techniques reveals a close match between the values for �; a and k with some discrepancy in

the values of c due to limitations in determining �+m and ��m.

The modeled polarization was then computed using the Langevin anhysteretic expression and the pa-

rameter values determined through the least squares �t to 1600 V data for peak input voltages ranging from

600 V to 1600 V. This model behavior is compared with the measured data in Figure 6. We �rst note that

the model �t for the 1600 V input is very accurate since this data was used to determine the parameters.

Furthermore, a comparison between the model behavior at 600 V, 800 V and 1000 V indicates that through-

out the range of drive levels, the model very accurately predicts the measured polarization. We reiterate

that this capability of the model for predicting the polarization at various drive levels is due to the fact that

it is based on energy principles.

We chose to employ the 1600 V data for the least squares algorithm solely to maintain consistency with

the asymptotic Algorithm 2. A comparison with initial results presented in [20] illustrates that for this

sample, equally accurate model �ts and predictions at all drive levels can be obtained using the parameter

values � = 3:7�106 Vm/C, a = 4:1�105 C/m2, c = 0:35, k = 1:8�106 C/m2 and Ps = 0:49 C/m2 obtained

through a least squares �t to the 600 V data. This again indicates the 
exibility of the model due to its

energy formulation.

Actuator 2 (Rectangular Patch):

The second PZT5A actuator which we considered was a rectangular patch having a thickness of 0.0381 cm

(15 mils). We include this con�guration to illustrate the variability which can occur between batches and

the manner through which it a�ects the model. The data also illustrates certain frequency-dependencies

which must be accommodated in broadband applications.
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Fig. 6. Model �t to 1600 V data for the circular PZT5A patch and model predictions at 600 V, 800 V

and 1000 V with the parameter choices � = 3:6�106 Vm/C, a = 4:2�105 C/m2, c = 0:30, k = 1:8�106 C/m2

and Ps = 0:49 C/m2; Model (||), Data ({ { {).
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To illustrate the potential variability among actuators, the data collected from the rectangular patch

with a peak input of 1800 V is compared in Figure 7a with 1200 V data from the 10 mil thick circular patch.

While the �eld relation (4.1) indicates that the polarization should theoretically agree, the data illustrates

a signi�cant di�erence in the coercive �eld due to di�erences between the materials. This necessitates the

re�nement of parameters to attain accurate model �ts throughout the range of operation.

The e�ect of even slight frequency shifts is illustrated in Figure 7b where quasistatic data collected at

200 mHz and a peak input voltage of 2200 V is compared with corresponding 1 Hz data. (Note that this

is the only �gure where 1 Hz data is included.) In its current state, the model parameters would require

updating to accommodate the observed di�erence in saturation behavior. While this can be done if the

frequency is �xed, updating in this manner relies on the mathematical rather than physical properties of the

model. The extension of the model to physically incorporate frequency e�ects is under investigation.

The modeled polarization curves obtained with the updated parameters summarized in Table 2 are

compared with the data in Figure 8. It is observed that as with the circular patch, the model accurately

characterizes the hysteresis throughout the drive range of the material.

Example 2 (PZT5H):

A second commonly employed soft PZT material is PZT5H. In this example, we illustrate the per-

formance of the model for a variety of parameter choices through a comparison with experimental data

generated with input voltages of 600 V, 1000 V, 1600 V and 2200 V.

The initial parameter values summarized in Table 2 were obtained using Algorithm 2 and the least

squares algorithm with the 2200 V data. A comparison of the parameter values for k and c with those of

PZT5A indicates smaller values for the PZT5H sample. The respective decreases in both the energy required

to break pinning sites and the amount of reversible domain wall bending re
ects the fact that PZT5H is

softer than PZT5A as evidenced by the lower coercive �eld. We also note that for this soft material, the

parameter k is nearly equal to the coercivity Ec as predicted by (3.15).
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Fig. 7. Comparison between 1200 V data from the 0.0254 cm (10 mil) circular patch and 1800 V data

from the 0.0381 cm (15 mil) rectangular patch; (b) Comparison between 1 Hz and 200 mHz data from the

rectangular patch.
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Fig. 8. Model �t to 600, 800, 1000, 1600 V data, collected at 200 mHz from the rectangular PZT5A patch,

with the parameter choices c = 0:15; k = 1:5 � 106 C/m2, � = 3:7 � 106 Vm/C, a = 4:1 � 105 C/m2 and

Ps = :49 C/m2.

The model �ts with the parameters obtained with the 2200 V data are compared with the data in

Figure 9. It is observed that the model with parameters estimated using the least squares algorithm provides

an excellent characterization throughout the hysteresis cycle whereas the model with parameters speci�ed

by Algorithm 2 accurately quanti�es the slope at the remanence, coercive and saturation points but exhibits

a slight discrepancy in polarization. This indicates the bene�t of employing a least squares algorithm to

obtain �nal parameter values.

The model with parameters obtained through a least squares �t to 2200 V data is then used to predict

the polarization at lower drive levels with the resulting �ts plotted in Figure 10. It is observed that with these

parameters, the model provides accurate predictions down through 1000 V but degrades somewhat at 600 V.

For applications which require the full range of actuator operation, a second strategy is to consider the least

squares �ts to data from a variety of drive levels to provide parameters which optimize the model performance

throughout the input range. This resulted in a modi�cation of the value of k from k = 1:0� 106 C/m2 to

k = 0:9�106 C/m2 and produced the model �ts plotted in Figure 11. With this choice, the characterization

at 2200 V is slightly less accurate but the model prediction at 600 V is improved. We reiterate that one

set of parameters is still employed throughout the entire input range. In this case, however, the parameters

have been optimized for the full operational range of the material.

Finally, we note that the parameter values predicted by Algorithm 2 using the 2200 V data are close

to the values obtained through a least squares �t due to the accuracy of the asymptotic algorithm relations

near saturation. To indicate the degradation in the accuracy of the relations which can occur at lower

drive levels, we note using the 1000 V data, the algorithms produced the parameters � = 3:6� 106 Vm/C,
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a = 4:3 � 105 C/m2, k = 1:2 � 106 C/m2 and c = 0:08 which di�er signi�cantly from the values obtained

near saturation or with the least squares �t. This indicates an advantage of the least squares method, which

is independent of drive level, and the necessity of applying the asymptotic relations near saturation.
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Fig. 9. Model �ts to the PZT5H data with parameters obtained through the least squares �t and

Algorithm 2; (a) Least Squares: � = 4:2 � 106 Vm/C, a = 6:4 � 105 C/m2, k = 1:0 � 106 C/m2, c = 0:2,

Ps = :425 C/m2, (b) Algorithm 2: � = 4:0 � 106 Vm/C, a = 5:8 � 105 C/m2, k = 1:1 � 106 C/m2,

c = 0:14; Ps = :425 C/m2.
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Fig. 10. Model �t to the PZT5H data with the parameter choices c = 0:2, k = 1:0 � 106 C/m2,

� = 4:2� 106 Vm/C, a = 6:4� 105 C/m2 and Ps = :425 C/m2.
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Fig. 11. Model �t to the PZT5H data with the parameter choices c = 0:2, k = 0:9 � 106 C/m2,

� = 4:2� 106 Vm/C, a = 6:4� 105 C/m2 and Ps = :425 C/m2.

Example 3 (PZT4):

The �nal material that we consider is the harder compound PZT4 which is initially poled. Because

more energy is required to turn dipoles, the material is not depoled when cycled, even at high input voltage

levels. The remanent bias produces the asymmetry observed in Figure 3 and necessitates the inclusion of

the bias �eld E0 and polarization values P0 and P1 as indicated in (2.6) - (2.8). The bias can, however, be

reduced if the material is maintained at a high voltage under thermally controlled conditions. The subsequent

trajectories are nearly symmetric and exhibit minimal bias in �eld or polarization.

In this example, we illustrate the capability of the model to quantify both the biased (asymmetric)

and unbiased (symmetric) polarization curves for PZT4. We consider �rst the characterization of biased

data collected at a peak input voltage of 2200 V. The data and model �t obtained with the parameter

values � = 6:4 � 106 Vm/C, a = 8:0 � 105 C/m2, k = 1:5 � 106 C/m2, c = 0:5, Ps = :44 C/m2 and

E0 = �4:0 � 105 V/m, P0 = :02 C/m2, P1 = 0 are plotted in Figure 12. It is observed that while the

model is not able to completely quantify domain switching after positive remanence, it does characterize the

primary behavior of the material throughout the cycle including the biased �eld and polarization and the

associated asymmetry. The model with the same hysteresis parameters and E0 = P0 = P1 is then compared

to the nearly symmetric data, obtained after exposure to high input �elds, in Figure 13. There it accurately

predicts the polarization at 1000 V, 1200 V and 1800 V input levels but under-predicts the hysteresis present

at 600 V. We note that these �ts can be improved if the parameters are re�ned.

This example further illustrates the philosophy employed in this model. Through the incorporation

of the associated physics, the model provides a characterization dependent only on inputs to the actuator

and parameters quantifying the state of the material. Once the hysteresis parameters �; a; c; k and Ps have
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been determined, the polarization obtained under quasistatic and isothermal operating conditions can be

characterized using the measured input �eld and bias values E0 and P0. This provides the model with

signi�cant 
exibility in a variety of applications.
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Fig. 12. Model �t to 2200 V PZT4 data with the parameters � = 6:4�106 Vm/C, a = 8:0� 105 C/m2,

k = 1:5� 106 C/m2, c = 0:5, Ps = :44 C/m2 and E0 = �4:0� 105 V/m, P0 = :02 C/m2, P1 = 0.
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Fig. 13. Model �t to PZT4 data with the parameters � = 6:4 � 106 Vm/C, a = 8:0 � 105 C/m2,

k = 1:5� 106 C/m2, c = 0:5, Ps = :44 C/m2 and E0 = P0 = 0.
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5. Concluding Remarks. This paper addresses the modeling of hysteresis in piezoelectric materials

through the application and extension of a domain wall theory for ferroelectric materials [18, 19]. The theory

characterizes the inherent hysteresis in the relation between the input �eld and output polarization through

the quanti�cation of energy required to bend and translate domain walls pinned at inclusions in the material.

This provides reversible and irreversible polarization components whose sum represents the polarization due

to an applied �eld. Characterization in this manner provides the model with the capability for specifying

the polarization at a variety of input �eld levels with one set of model parameters. The 
exibility of the

model is further augmented by the small number (�ve) of required parameters and the physical nature of the

parameters. For example, the saturation polarization Ps is often known a priori or can be directly obtained

from the data, the reversible coe�cient c can be estimated from the ratio of the slopes of the polarization

curve at �eld reversal, and for soft materials, the pinning coe�cient k can be directly estimated from the

coercive �eld Ec.

The contributions of this paper are threefold. The �rst focussed on the extension of the model to

accommodate hysteresis loops which are not rotationally symmetric. This was motivated by the biasing

e�ects observed in poled hard PZT actuators but the theory is su�ciently general to encompass a variety

of applications. The second contribution was the validation of the theory and illustration of its predictive

capabilities for three commonly employed PZT compounds. The theory in [18, 19] was illustrated only

for PMN-PT-BT employed in the ferroelectric regime with no demonstration of the predictive capabilities,

so this signi�cantly extends the applicability of the theory. The third contributions of the paper was the

development of asymptotic relations which highlight the physical nature of the �ve parameters and can be

used to obtain initial parameter estimates. While the approach is analogous to that employed in [13] for

ferromagnetic materials, the resulting relations and algorithms di�er in certain respects.

The model, with parameters estimated using both the asymptotic relations and a least squares �t

to the measured data, was used to characterize PZT5A, PZT5H and PZT4 actuators. In each case, the

parameters were determined using data from one drive level. The model, with these parameters �xed, was

then used to predict the polarization throughout the range of operation. As illustrated in the examples, the

formulation of the model in terms of energy relations based on the input �eld provided it with the capability

for prediction throughout the operational range. Furthermore, once the biasing �eld E0 and polarization P0

were determined, the model could accommodate the asymmetry exhibited by the poled PZT4. This provides

the model with signi�cant 
exibility in a variety of applications.

In its current formulation, the theory is limited to quasistatic and thermally controlled operating regimes.

Moreover, it was developed under the assumption that the e�ects of crystalline anisotropies are minimal. We

note that in certain cases, parameters can be determined which provide accurate model �ts at a variety of �xed

frequencies. The use of the model in this manner relies on its mathematical rather than physical properties,

however, which limits its 
exibility and robustness with regard to changing dynamics. The extensions of the

physical theory to accommodate the e�ects of frequency, transient temperatures and crystalline anisotropies

are under current investigation.

Finally, the ODE nature of the model makes it amenable to inversion through the consideration of a

complementary ODE in a manner analogous to that described in [17]. This facilitates the construction of an

inverse compensator which can be used for linear control design [21, 22]. The application of these techniques

for linear control implementation for piezoceramic actuators which exhibit hysteresis is under investigation.
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